Unmanned Aircraft Systems:

Human Factors Issues

Nancy J. Cooke, Ph.D.

Arizona State University and

Cognitive Engineering Research Institute

30 April 2008

NTSB Forum on the Safety of Unmanned Aircraft Systems

Sources

Research at ASU/CERI on UAS Command-and-Control

Human Factors of UAVs <u>Workshops</u> (2004-2007): operators, HF researchers, engineers/developers

Cooke, N. J., Pringle, H., Pedersen, H., & Connor, O. (Eds., 2006). *Human* Factors of Remotely Operated Vehicles

Cooke, N. J., Gesell, L.E., Hartman, J., Pack, W., Pederson, H., & Skinner, M. (2006). *Human Factors in Unmanned System Training*. <u>Technical Report for NASA</u> sponsored Unmanned Aerial Vehicles Alliance, Research and Curriculum (UAV-ARC) Development Partnership Project.

Interactions with UAV Battlelab, AZ Air National Guard, Ft. Huachuca Army Research Lab, Nellis AFB, ERAU, Kutta

Human Factors of Unmanned Systems?

- → UASs have been reported to have a high mishap rate--by some counts 100 times higher than that of manned aircraft (Jackson, 2003)
- → 33-43% of the mishaps to human factors issues (Schmidt & Parker, 1995; Seagle, 1997).

Some Human Factors Issues Implicated

- → Loss of situation awareness
- Operational tempo/fatigue/workload
- Poor teamwork/handoffs/lack of communication
- Command-and-control chain inefficient
- → Remote control with poor feedback
- → Crew selection & training
- → Aeromedical readiness
- → Pilot proficiency/currency
- → Personnel shortages

UAS Myths

MYTH #1: UAS is unmanned

- → Operators are remote, not absent
- Ground personnel are numerous (1-5 Global Hawks require 28 maintenance personnel in theater; Army estimates staffing at 70 per vehicle)

MYTH #2: UAS is a vehicle

- A system that includes the vehicle, the ground control station, and the payload which is typically part of a larger system
- * "Flying the camera," rather than flying the vehicle.

MYTH #3: UAS flight is like manned aviation

There are similarities

- → Human navigates and controls position and speed of vehicle
- → Landing and take-off are difficult tasks for both platforms

There are big differences

> Sensing and control occur remotely

Human Factors Issues

Human-Machine Interface

- 4
- → Stick-and-rudder control schemes (Predator) vs. point-and-click (Global Hawk and Shadow)
- → Poor display configurations
- → Excessive modes
- Incompatible controlresponse mapping
- → No standard interface

Remote Sensing and Control

- Perception occurs through sensor displays
- Visual experience of a UAS pilot looking at the world through a soda straw
- There is lack of presence no motion or tactile feedback
- Significant delays between control and vehicle response
- → As a result...
 - Landing difficulties Predator nose-mounted flight camera is not on a gimbal, the pilot loses sight of the runway until the UAS touches down
 - Limited ability to perceive weather changes
 - See-and-avoid difficulties
 - No seat-of-the-pants flying
 - Loss of situation awareness, spatial disorientation
- Ongoing Research...
 - Improved sensors
 - Synthetic overlays and enhanced displays
 - Possible motion and tactile feedback

Spatial Disorientation

- UAS operators can become spatially disoriented
- → Visual perception limited by the camera angle
 - Lack of visual flow due to poor displays
 - SAR and Infrared displays
- Visual perception is exacerbated by being physically removed from the feedback of the vehicle
 - Visual-vestibular mismatches
- → Difficulty in discerning objects and judging distances between objects (especially at night)
- → UAS mishaps, particularly at the time of landing, have been attributed to problems of spatial disorientation

Automation & Multi-UAS Operation

Problems with Automation

- Automation changes the human's task- Overseer
- Loss of situation awareness
- Trust in automation (misuse, disuse, over-reliance)
- Breakdowns in automation

→ Workload

- Workload is not constant: "intense boredom with snippets of extreme terror"
- Workload differs by roles, platforms, & mission objectives
- Workload tends to be greatest when a target is reached and when re-planning occurs

Multi UAS operations

- Typically 2 operators (pilot and sensor operator): 1 UAS
- Current multi-UAS platforms maintain 1 sensor operator per UAS

Multiple UAS control may be possible with very high degrees of automation or when all vehicles are in a normal point-to-point state of flight. However, when the situation changes, when a single UAS is in trouble, or when a target is reached, multiple UAS control by a single individual could range from difficult to impossible.

Fatigue

- UAS operators often called upon to work long shifts
- → Environmental stressors
- → High workload
- → Vigilance task
- Interruption of circadian rhythms
- → Lack of sleep
- → Lack of operational standards

Crew Coordination and Communication

- → Some UAS mishaps attributed poor teamwork
- Crew handoffs in midair common
- → Predator take-offs and landings handled by different crews than mission crew

Remote ground operation of UASs requires multiple distributed individuals and increases communication and coordination requirements

Training

Training should not be a fix for poor design

- Lack of standards for pilot qualifications
 - Army systems (Hunter, Shadow UASs) piloted by individuals trained to operate a UAS, but not a manned aircraft
 - Air Force's Predator operators are trained Air Force pilots of manned aircraft.
- Unclear knowledge, skills, and abilities associated with the task of operating a UAS
 - Compatible with instrument flight conditions of manned flight (i.e., little or no visual feedback)
 - New skill set required
 ability to project into the remote environment.
- Training & Certification issues and research questions:
 - Determine knowledge, skills, and abilities necessary for UAS operation.
 - Identify common ground across services, platforms, airspace, and mission
 - Identify most effective training method or hybrid of methods
 - Determine empirically whether manned flight experience is a necessary prerequisite to UAS training, and
 if so, the type and extent of ground school/ flight training necessary
 - Determine value of prior experience operating remote-controlled airplanes
 - Determine importance of video gaming experience
 - How should performance be assessed?
 - How instructors should be trained?
 - What distinguishes competency from expertise?

Social Implications

- Pilotless planes in the NAS
- Passenger planes w/o a pilot
- Remote termination in the military
- Privacy issues "spy planes"

Conclusions

- → UASs are not unmanned
 - For effective, safe systems, it is essential that human capabilities and limitations be considered early in system and training design
- → UASs are systems, not vehicles
 - Certification and air worthiness assessment needs to include ground control station
- → Gaps in R&D
 - Interfaces for improving remote sensing and control and increasing operator situation awareness
 - Understanding limits on automation and multiple UAS control
 - Improved teamwork
 - Training based on requisite knowledge, skills, and abilities
- → The technology is available; proper human systems integration is missing
 - Common ground across platforms
 - Connection to operators and developers

Questions or Comments?

Nancy J. Cooke

ncooke@asu.edu

. . .

ncooke@cerici.org

www.certt.com

www.cerici.org

References

- Calhoun, G., Draper, M., Nelson, J., Abernathy, M., Guilfoos, B., & Ruff, H. (2005). Synthetic Vision System for Improving UAV Operator Situation Awareness. Paper presented at the CERI Second Annual Human Factors of UAVs Workshop, May 25-26, Mesa, AZ.
- Cooke, N. J., Gesell, L.E., Hartman, J., Pack, W., Pederson, H., & Skinner, M. (2006). Human Factors in Unmanned System Training. Technical Report for NASA sponsored Unmanned Aerial Vehicles Alliance, Research and Curriculum (UAV-ARC) Development Partnership Project.
- → Jackson, P. (Ed.). (2003). *Jane's all the world's aircraft 2003-2004*. Alexandria, VA: Janes Information Group.
- Schmidt, J. & Parker, R. (1995). Development of a UAV mishap factors database. Proceedings of the 1995 Association for Autonomous Vehicle Systems International Symposium, 310-315
- Seagle, Jr., J. D. (1997). *Unmanned aerial vehicle mishaps: A human factors approach*. Unpublished master's thesis, Embry-Riddle Aeronautical University, Norfolk, Virginia.
- Self, B. P., Ercoline, W. R., Olson, W. A., & Tvaryanas, A. P. (2006). Spatial disorientation in uninhabited aerial vehicles. In N. J. Cooke, H. Pringle, H. Pedersen, & O. Connor (Eds.), *Human Factors of Remotely Operated Vehicles.* Elsevier.
- Tvaryanas, A. P., Thompson, B. T., & Constable, S. H. (2005). U.S. Military UAV Mishaps: Assessment of the Role of Human Factors using HFACS. Paper presented at the CERI Second Annual Human Factors of UAVs Workshop, May 25-26, Mesa, AZ.
- Wickens, C. D., Dixon, S. R., and Ambinder, M. (2006). Workload and automation reliability in unmanned aerial vehicles. In N. J. Cooke, H. Pringle, H. Pedersen, & O. Connor (Eds.), Human Factors of Remotely Operated Vehicles. Elsevier.

